Document Type : Research Article (s)

Authors

Department of Physical Education and Sport Sciences, Faculty of Humanities and Social Sciences, University of Kurdistan, Sanandaj, Iran

10.30476/intjsh.2025.102782.1414

Abstract

Background: It is well-established that executive function can be affected by a session of aerobic training. Our study aimed to determine how acute aerobic exercise affect executive function at different intensities in 9-10-year-old children.
Methods: The participants in this quasi-experimental study were 36 children (9.58 years±0.50) in Saqqez, Kurdistan Province, Iran in the first half of 2022. They were randomly assigned into 60% and 80% heart rate reserve (HRR) and a control group. All groups performed the Progressive Aerobic Cardiovascular Run (PACER) test in the first stage of study to ensure homogeneity. Then, in the pretest- posttest design, inhibitory control and working memory were assessed using the Stroop and N-back tests. During the 15-minute exercise session, participants exercised on a treadmill at different intensities of 60% and 80% of their HRR. One-way Analysis of Variance (ANOVA) and paired t-test were employed to analyze between-group and within-group differences in control and intervention groups.
Results: According to the results, working memory scores of children improved significantly in 60% and 80% HRR groups (65.44±9.51 vs. 44.69±17.76) compared with the control group (31.00±2.02) (P<0.0001). Different exercise intensities; however, did not show any advantage over a control group in the interference score of correct answers, or reaction time (RT) of inhibition control (60% HRR: 4.08±3.77, 80% HRR: 1.16±3.32, Control: 4.25±3.62, P=0.074), (60% HRR: 52.00±65.91, 80% HRR: 85.66±59.75, Control: 27.16±106.46, P=0.215).
Conclusions: The study findings revealed that working memory in pre-adolescents can be improved by a 15-minute session of moderate or high-intensity aerobic exercise. However, there were no significant differences between the groups in terms of inhibitory control.

Highlights

Arezo Ahmadpour: (Google Scholar)

Keywords

  1. Pontifex MB, McGowan AL, Chandler MC, Gwizdala KL, Parks AC, Fenn K, et al. A primer on investigating the after effects of acute bouts of physical activity on cognition. Psychology of Sport and Exercise. 2019;40:1-22. doi: 10.1016/j.psychsport.2018.08.015. ##
  2. Contreras-Osorio F, Guzmán-Guzmán IP, Cerda-Vega E, Chirosa-Ríos L, Ramírez-Campillo R, Campos-Jara C. Anthropometric parameters, physical activity, physical fitness, and executive functions among primary school children. Int J Environ Res Public Health. 2022;19(5):3045. doi: 10.3390/ijerph19053045. PubMed PMID: 35270736; PubMed Central PMCID: PMC8910200. ##
  3. Jasim SA, Singh M, Al-Dhalimy AMB, Zwamel AH, Jawad IA, Shalaby NS. The impact of chronic exercise on cognitive function: an overview of reviews. Iranian Journal of Psychiatry. 2024;19(4):1-10. doi: 10.18502/ijps.v19i4.16561. ##
  4. Liu S, Yu Q, Li Z, Cunha PM, Zhang Y, Kong Z, et al. Effects of acute and chronic exercises on executive function in children and adolescents: a systemic review and meta-analysis. Front Psychol. 2020;11:554915. doi: 10.3389/fpsyg.2020.554915. PubMed PMID: 33391074; PubMed Central PMCID: PMC7773601. ##
  5. Lambourne K, Tomporowski PD. The effect of exercise-induced arousal on cognitive task performance: A meta-regression analysis. Brain Res. 2010;1341:12-24. doi: 10.1016/j.brainres.2010.03.091. PubMed PMID: 20381468. ##
  6. Ludyga S, Gerber M, Brand S, Holsboer‐Trachsler E, Pühse U. Acute effects of moderate aerobic exercise on specific aspects of executive function in different age and fitness groups: A meta‐analysis. Psychophysiology. 2016;53(11):1611-1626. doi: 10.1111/psyp.12736. PubMed PMID: 27556572. ##
  7. Tomporowski PD, McCullick B, Pendleton DM, Pesce C. Exercise and children's cognition: The role of exercise characteristics and a place for metacognition. Journal of Sport and Health Science. 2015;4(1):47-55. doi: 10.1016/j.jshs.2014.09.003. ##
  8. Donnelly JE, Hillman CH, Castelli D, Etnier JL, Lee S, Tomporowski P, et al. Physical activity, fitness, cognitive function, and academic achievement in children: a systematic review. Med Sci Sports Exerc. 2016;48(6):1197-222. doi: 10.1249/MSS.0000000000000901. PubMed PMID: 27182986; PubMed Central PMCID: PMC4874515. ##
  9. Cantelon JA, Giles GE. A review of cognitive changes during acute aerobic exercise. Front Psychol. 2021;12:653158. doi: 10.3389/fpsyg.2021.653158. PubMed PMID: 34975602; PubMed Central PMCID: PMC8716584. ##
  10. Falck RS, Davis JC, Best JR, Crockett RA, Liu-Ambrose T. Impact of exercise training on physical and cognitive function among older adults: a systematic review and meta-analysis. Neurobiol Aging. 2019;79:119-130. doi: 10.1016/j.neurobiolaging.2019.03.007. PubMed PMID: 31051329. ##
  11. Wei J, Hou R, Xie L, Chandrasekar EK, Lu H, Wang T, et al. Sleep, sedentary activity, physical activity, and cognitive function among older adults: The National Health and Nutrition Examination Survey, 2011–2014. J Sci Med Sport. 2021;24(2):189-194. doi: 10.1016/j.jsams.2020.09.013. PubMed PMID: 33032913. ##
  12. Hillman CH, Logan NE, Shigeta TT. A review of acute physical activity effects on brain and cognition in children. Translational Journal of the American College of Sports Medicine. 2019;4(17):132-6. doi: 10.1249/TJX.0000000000000101. ##
  13. De Greeff JW, Bosker RJ, Oosterlaan J, Visscher C, Hartman E. Effects of physical activity on executive functions, attention and academic performance in preadolescent children: a meta-analysis. J Sci Med Sport. 2018;21(5):501-507. doi: 10.1016/j.jsams.2017.09.595. PubMed PMID: 29054748. ##
  14. Chen A, Fu L, Zhu L. Effects of medium-intensity basketball with different durations on children's executive function. J Capital Ins Phys Educ. 2015;27:223-227. doi: 10.14104/j.cnki.1006-2076.2017.01.015. ##
  15. Hillman CH, Pontifex MB, Raine LB, Castelli DM, Hall EE, Kramer A. The effect of acute treadmill walking on cognitive control and academic achievement in preadolescent children. Neuroscience. 2009;159(3):1044-54. doi: 10.1016/j.neuroscience.2009.01.057. PubMed PMID: 19356688; PubMed Central PMCID: PMC2667807. ##
  16. Zhu Q, Deng J, Yao M, Xu C, Liu D, Guo L, et al. Effects of physical activity on visuospatial working memory in healthy individuals: A systematic review and meta-analysis. Front Psychol. 2023;14:1103003. doi: 10.3389/fpsyg.2023.1103003. PubMed PMID: 36874874; PubMed Central PMCID: PMC9974834. ##
  17. Cooper SB, Dring KJ, Morris JG, Sunderland C, Bandelow S, Nevill ME. High intensity intermittent games-based activity and adolescents’ cognition: Moderating effect of physical fitness. BMC Public Health. 2018;18(1):603. doi: 10.1186/s12889-018-5514-6. PubMed PMID: 29739386; PubMed Central PMCID: PMC5941716. ##
  18. Chen A-G, Zhu L-N, Yan J, Yin H-C. Neural basis of working memory enhancement after acute aerobic exercise: fMRI study of preadolescent children. Front Psychol. 2016;7:1804. doi: 10.3389/fpsyg.2016.01804. PubMed PMID: 27917141; PubMed Central PMCID: PMC5116552. ##
  19. Aguayo BB, Vallejo AP, Román PÁL. Acute effect of two different physical education classes on memory in children school-age. Cognitive Development. 2019;50:98-104. doi: 10.1016/j.cogdev.2019.03.004. ##
  20. Stroth S, Kubesch S, Dieterle K, Ruchsow M, Heim R, Kiefer M. Physical fitness, but not acute exercise modulates event-related potential indices for executive control in healthy adolescents. Brain Res. 2009;1269:114-24. doi: 10.1016/j.brainres.2009.02.073. PubMed PMID: 19285042. ##
  21. Best JR. Effects of physical activity on children’s executive function: Contributions of experimental research on aerobic exercise. Dev Rev. 2010;30(4):331-551. doi: 10.1016/j.dr.2010.08.001. PubMed PMID: 21818169; PubMed Central PMCID: PMC3147174. ##
  22. Weng TB, Pierce GL, Darling WG, Voss MW. Differential effects of acute exercise on distinct aspects of executive function. Med Sci Sports Exerc. 2015;47(7):1460-9. doi: 10.1249/mss.0000000000000542. PubMed PMID: 25304335. ##
  23. Brown DM, Bray SR. Acute effects of continuous and high‐intensity interval exercise on executive function. Journal of Applied Biobehavioral Research. 2018;23(3):e12121. doi: 10.1111/jabr.12121. ##
  24. Mayorga-Vega D, Aguilar-Soto P, Viciana J. Criterion-related validity of the 20-m shuttle run test for estimating cardiorespiratory fitness: a meta-analysis. J Sports Sci Med. 2015;14(3):536-47. PubMed PMID: 26336340; PubMed Central PMCID: PMC4541117. ##
  25. Tanaka H, Monahan KD, Seals DR. Age-predicted maximal heart rate revisited. J Am Coll Cardiol. 2001;37(1):153-6. doi: 10.1016/s0735-1097(00)01054-8. PubMed PMID: 11153730.
  26. Chen A-G, Yan J, Yin H-C, Pan C-Y, Chang Y-K. Effects of acute aerobic exercise on multiple aspects of executive function in preadolescent children. Psychology of Sport and Exercise. 2014;15(6):627-636. doi: 10.1016/j.psychsport.2014.06.004. ##
  27. Mou H, Tian S, Fang Q, Qiu F. The immediate and sustained effects of moderate-intensity continuous exercise and high-intensity interval exercise on working memory. Front Psychol. 2022;13:766679. doi: 10.3389%2Ffpsyg.2022.766679. PubMed PMID: 35242075; PubMed Central PMCID: PMC8887601. ##
  28. Szuhany KL, Bugatti M, Otto MW. A meta-analytic review of the effects of exercise on brain-derived neurotrophic factor. J Psychiatr Res. 2015;60:56-64. doi: 10.1016/j.jpsychires.2014.10.003. PubMed PMID: 25455510; PubMed Central PMCID: PMC4314337. ##
  29. Moriarty TA, Mermier C, Kravitz L, Gibson A, Beltz N, Zuhl M. Acute aerobic exercise based cognitive and motor priming: practical applications and mechanisms. Front Psychol. 2019;10:2790. doi: 10.3389/fpsyg.2019.02790. PubMed PMID: 31920835; PubMed Central PMCID: PMC6920172. ##
  30. El-Sayes J, Harasym D, Turco CV, Locke MB, Nelson AJ. Exercise-induced neuroplasticity: a mechanistic model and prospects for promoting plasticity. Neuroscientist. 2019;25(1):65-85. doi: 10.1177/1073858418771538. PubMed PMID: 29683026. ##
  31. Moreau D, Chou E. The acute effect of high-intensity exercise on executive function: a meta-analysis. Perspect Psychol Sci. 2019;14(5):734-764. doi: 10.1177/1745691619850568. PubMed PMID: 31365839. ##