Document Type : Research Article (s)


1 Department of Physical Education, North Tehran Branch, Islamic Azad University, Tehran, Iran

2 Department of Physical Education, Farhangian University, Gorgan, Iran

3 Department of Physical Education, Tabriz Branch, Islamic Azad University, Tabriz, Iran

4 Department of Physical Education, Urmia University of Technology, Urmia, Iran


Background: An important issue for pediatric health is to understand how to enhance the level of physical activity of children and adolescents during the pandemic. The present study aimed to investigate the effects of a physical education- based online intervention on promoting motivation and physical activity of adolescents during the COVID-19 pandemic.
Methods: The present study used an experimental design with pre-test and post-test conducted in Iran, 2020. The participants were 68 high school students who were randomly allocated into intervention and control groups. The participants of the intervention group were exposed to a three-month intervention based on Self-Determination theory within the online physical education classes while those in the control group followed their regular online physical education classes. Perceived autonomy support, motivation, intention, and physical activity behavior were measured using standard questionnaires. Independent t test and analysis of variance (ANOVA) were utilized to analyze the data.
Results: The pre-test showed that the participants of both groups had similar perceived autonomy support, motivation, intention, and physical activity behavior at baseline. However, the participants in the intervention group reported higher perceived autonomy support (3.2 vs. 1.48, p <0.001), motivation (3.03 vs. 1.49, p <0.001), intention (2.75 vs. 1.51, p <0.001), and physical activity level (2.4 vs. 1.11, p <0.001) in the post-test in comparison to those in the control group.
Conclusions: These results highlighted the importance of developing strategies in online physical education classes for improving motivation and physical activity level of adolescents during the COVID-19 pandemic.


1. de Onis M, Blössner M, Borghi E. Global prevalence and trends of overweight and obesity among preschool children. Am J Clin Nutr. 2010;92(5):1257-64. doi: 10.3945/ajcn.2010.29786. PubMed PMID: 20861173.## 2. Khadaee GH, Saeidi M. Increases of Obesity and Overweight in Children: an Alarm for Parents and Policymakers. International Journal of Pediatrics. 2016;4(4):1591-1601. doi: 10.22038/ijp.2016.6677. Persian. ## 3. Shiasi Arani K, Ghasemi SE, Moravveji A, Shahpouri Arani A. Frequency of metabolic syndrome and type 2 diabetes among the obese children and adolescents in Kashan during 2009-11. J Kashan Univ Med Sci. 2012;16(3):240-247. ## 4. Garvey WT. Clinical Definition of overweight and obesity. Bariatric Endocrinology: Springer; 2019. 121-43. doi: 10.1007/978-3-319-95655-8_7. ## 5. Zaky DS, Ali AA, Abd-Elraheem SE, Abdel-Moniem SH. Circulating Osteoprotegerin Level in Relation to Obesity in Middle Aged Females. International Journal of Prevention and Treatment. 2019;8(2):41-45. doi: 10.5923/j.ijpt.20190802.02. ## 6. Nikolopoulou A, Kadoglou NP. Obesity and metabolic syndrome as related to cardiovascular disease. Expert Rev Cardiovasc Ther. 2012;10(7):933-9. doi: 10.1586/erc.12.74. PubMed PMID: 22908926. ## 7. Visscher TL, Seidell JC. The public health impact of obesity. Annu Rev Public Health. 2001;22(1):355-75. doi: 10.1146/annurev.publhealth.22.1.355. PubMed PMID: 11274526. ## 8. Kotanidou EP, Kotanidis CP, Giza S, Serbis A, Tsinopoulou V-R, Karalazou P, et al. Osteoprotegerin increases parallel to insulin resistance in obese adolescents. Endocr Res. 2019;44(1-2):9-15. doi: 10.1080/07435800.2018.1480630. PubMed PMID: 29877745. ## 9. Osako MK, Nakagami H, Koibuchi N, Shimizu H, Nakagami F, Koriyama H, et al. Estrogen inhibits vascular calcification via vascular RANKL system: common mechanism of osteoporosis and vascular calcification. Circ Res. 2010;107(4):466-75. doi: 10.1161/CIRCRESAHA.110.216846. PubMed PMID: 20595654. ## 10. Sprini D, Rini GB, Di Stefano L, Cianferotti L, Napoli N. Correlation between osteoporosis and cardiovascular disease. Clin Cases Miner Bone Metab. 2014;11(2):117-9. PubMed PMID: 25285139; PubMed Central PMCID: PMC4172178. ## 11. Kwiterovich Jr PO. Recognition and management of dyslipidemia in children and adolescents. J Clin Endocrinol Metab. 2008;93(11):4200-9. doi: 10.1210/jc.2008-1270. PubMed PMID: 18697860. ## 12. Klop B, Elte JWF, Cabezas MC. Dyslipidemia in obesity: mechanisms and potential targets. Nutrients. 2013;5(4):1218-40. doi: 10.3390/nu5041218. PubMed PMID: 23584084; PubMed Central PMCID: PMC3705344. ## 13. Vekic J, Zeljkovic A, Stefanovic A, Jelic-Ivanovic Z, Spasojevic-Kalimanovska V. Obesity and dyslipidemia. Metabolism. 2019;92:71-81. doi: 10.1016/j.metabol.2018.11.005. PubMed PMID: 30447223. ## 14. Kermani A, Namakin K, Sharifzadeh GR, Faal GR. Umbilical Cord Blood Lipid Profile in Healthy Neonates in Iran. Iran J Pediatr. 2020;30(3):e99114. doi: 10.5812/ijp.99114. ## 15. Aubin JE, Bonnelye E. Osteoprotegerin and its ligand: a new paradigm for regulation of osteoclastogenesis and bone resorption. Osteoporos Int. 2000;11(11):905-13. doi: 10.1007/s001980070028. PubMed PMID: 11193242. ## 16. Yasuda H, Shima N, Nakagawa N, Mochizuki S-I, Yano K, Fujise N, et al. Identity of osteoclastogenesis inhibitory factor (OCIF) and osteoprotegerin (OPG): a mechanism by which OPG/OCIF inhibits osteoclastogenesis in vitro. Endocrinology. 1998;139(3):1329-37. doi: 10.1210/endo.139.3.5837. PubMed PMID: 9492069. ## 17. Rochette L, Meloux A, Rigal E, Zeller M, Cottin Y, Vergely C. The role of osteoprotegerin and its ligands in vascular function. Int J Mol Sci. 2019;20(3):705. doi: 10.3390/ijms20030705. PubMed PMID: 30736365; PubMed Central PMCID: PMC6387017. ## 18. Davaine J-M, Quillard T, Brion R, Lapérine O, Guyomarch B, Merlini T, et al. Osteoprotegerin, pericytes and bone-like vascular calcification are associated with carotid plaque stability. PLoS One. 2014;9(9):e107642. doi: 10.1371/journal.pone.0107642. PubMed PMID: 25259713; PubMed Central PMCID: PMC4178031. ## 19. Schoppet M, Preissner KT, Hofbauer LC. RANK ligand and osteoprotegerin: paracrine regulators of bone metabolism and vascular function. Arterioscler Thromb Vasc Biol. 2002;22(4):549-53. doi: 10.1161/01.atv.0000012303.37971.da. PubMed PMID: 11950689. ## 20. Musialik K, Szulińska M, Hen K, Skrypnik D, Bogdański P. The relation between osteoprotegerin, inflammatory processes, and atherosclerosis in patients with metabolic syndrome. Eur Rev Med Pharmacol Sci. 2017;21(19):4379-4385. PubMed PMID: 29077157. ## 21. Naruszewicz M. Aktualne spojrzenie na rolę hiperhomocysteinemii w patogenezie miażdżycy. Polski Przegląd Neurologiczny. 2005;1(1):19-22. ## 22. Järvisalo MJ, Jartti L, Näntö-Salonen K, Irjala K, Rönnemaa T, Hartiala JJ, et al. Increased aortic intima-media thickness: a marker of preclinical atherosclerosis in high-risk children. Circulation. 2001;104(24):2943-7. doi: 10.1161/hc4901.100522. PubMed PMID: 11739310. ## 23. Dalla Pozza R, Bechtold S, Bonfig W, Putzker S, Kozlik-Feldmann R, Netz H, et al. Age of onset of type 1 diabetes in children and carotid intima medial thickness. J Clin Endocrinol Metab. 2007;92(6):2053-7. doi: 10.1210/jc.2006-2868. PubMed PMID: 17374703. ## 24. McVeigh G, Gibson W, Hamilton PK. Cardiovascular risk in the young type 1 diabetes population with a low 10‐year, but high lifetime risk of cardiovascular disease. Diabetes Obes Metab. 2013;15(3):198-203. doi: 10.1111/dom.12013. PubMed PMID: 22998614. ## 25. Berenson GS. Childhood risk factors predict adult risk associated with subclinical cardiovascular disease: The Bogalusa Heart Study. Am J Cardiol. 2002;90(10C):3L-7L. doi: 10.1016/S0002-9149(02)02953-3. PubMed PMID: 12459418. ## 26. Strong JP, Malcom GT, McMahan CA, Tracy RE, Newman 3rd WP, Herderick EE, et al. Prevalence and extent of atherosclerosis in adolescents and young adults: implications for prevention from the Pathobiological Determinants of Atherosclerosis in Youth Study. JAMA. 1999;281(8):727-35. doi: 10.1001/jama.281.8.727. PubMed PMID: 10052443. ## 27. Lambrinoudaki I, Tsouvalas E, Vakaki M, Kaparos G, Stamatelopoulos K, Augoulea A, et al. Osteoprotegerin, Soluble Receptor Activator of Nuclear Factor- κ B Ligand, and Subclinical Atherosclerosis in Children and Adolescents with Type 1 Diabetes Mellitus. Int J Endocrinol. 2013;2013:102120. doi: 10.1155/2013/102120. PubMed PMID: 24288529; PubMed Central PMCID: PMC3833004. ## 28. Kiechl S, Schett G, Wenning G, Redlich K, Oberhollenzer M, Mayr A, et al. Osteoprotegerin is a risk factor for progressive atherosclerosis and cardiovascular disease. Circulation. 2004;109(18):2175-80. doi: 10.1161/01.CIR.0000127957.43874.BB. PubMed PMID: 15117849. ## 29. Schoppet M, Sattler AM, Schaefer JR, Herzum M, Maisch B, Hofbauer LC. Increased osteoprotegerin serum levels in men with coronary artery disease. J Clin Endocrinol Metab. 2003;88(3):1024-8. doi: 10.1210/jc.2002-020775. PubMed PMID: 12629080. ## 30. Rhee E-J, Lee W-Y, Kim S-Y, Kim B-J, Sung K-C, Kim B-S, et al. Relationship of serum osteoprotegerin levels with coronary artery disease severity, left ventricular hypertrophy and C-reactive protein. Clin Sci. 2005;108(3):237-43. doi: 10.1042/CS20040255. PubMed PMID: 15569000. ## 31. Jono S, Ikari Y, Shioi A, Mori K, Miki T, Hara K, et al. Serum osteoprotegerin levels are associated with the presence and severity of coronary artery disease. Circulation. 2002;106(10):1192-4. doi: 10.1161/01.CIR.0000031524.49139.29. PubMed PMID: 12208791. ## 32. Oh ES, Rhee E-J, Oh KW, Lee WY, Baek KH, Yoon KH, et al. Circulating osteoprotegerin levels are associated with age, waist-to-hip ratio, serum total cholesterol, and low-density lipoprotein cholesterol levels in healthy Korean women. Metabolism. 2005;54(1):49-54. doi: 10.1016/j.metabol.2004.08.005. PubMed PMID: 15562379. ## 33. Çelik N, Andiran N, Yilmaz AE. The relationship between serum magnesium levels wıth childhood obesity and insulin resistance: a review of the literature. J Pediatr Endocrinol Metab. 2011;24(9-10):675-8. doi: 10.1515/JPEM.2011.255. PubMed PMID: 22145455. ## 34. Jose B, Jain V, Vikram NK, Agarwala A, Saini S. Serum magnesium in overweight children. Indian Pediatr. 2012;49(2):109-12. doi: 10.1007/s13312-012-0024-6. PubMed PMID: 21719932. ## 35. Gannagé-Yared M, Yaghi C, Habre B, Khalife S, Noun R, Germanos-Haddad M, et al. Osteoprotegerin in relation to body weight, lipid parameters insulin sensitivity, adipocytokines, and C-reactive protein in obese and non-obese young individuals: results from both cross-sectional and interventional study. Eur J Endocrinol. 2008;158(3):353-9. doi: I:10.1530/EJE-07-0797. PubMed PMID: 18299469. ## 36. Suliburska J, Bogdanski P, Gajewska E, Kalmus G, Sobieska M, Samborski W. The association of insulin resistance with serum osteoprotegerin in obese adolescents. J Physiol Biochem. 2013;69(4):847-53. doi: 10.1007%2Fs13105-013-0261-8. PubMed PMID: 23695991. ## 37. Gannagé‐Yared MH, Fares F, Semaan M, Khalife S, Jambart S. Circulating osteoprotegerin is correlated with lipid profile, insulin sensitivity, adiponectin and sex steroids in an ageing male population. Clin Endocrinol. 2006;64(6):652-8. doi: 10.1111/j.1365-2265.2006.02522.x. PubMed PMID: 16712667. ## 38. Erol M, Gayret OB, Nacaroglu HT, Yigit O, Zengi O, Akkurt MS, et al. Association of osteoprotegerin with obesity, insulin resistance and non-alcoholic fatty liver disease in children. Iran Red Crescent Med J. 2016;18(11):e41873. doi: 10.5812/ircmj.41873. PubMed PMID: 28203453; PubMed Central PMCID: PMC5294423. ## 39. Ugur-Altun B, Altun A, Gerenli M, Tugrul A. The relationship between insulin resistance assessed by HOMA-IR and serum osteoprotegerin levels in obesity. Diabetes Res Clin Pract. 2005;68(3):217-22. doi: 10.1016/j.diabres.2004.10.011. PubMed PMID: 15936463. ## 40. Venuraju SM, Yerramasu A, Corder R, Lahiri A. Osteoprotegerin as a predictor of coronary artery disease and cardiovascular mortality and morbidity. J Am Coll Cardiol. 2010;55(19):2049-61. doi: 10.1016/j.jacc.2010.03.013. PubMed PMID: 20447527. ## 41. Stanik J, Kratzsch J, Landgraf K, Vogel M, Thiery J, Kiess W, et al. The Bone Markers Sclerostin, Osteoprotegerin, and Bone-Specific Alkaline Phosphatase Are Related to Insulin Resistance in Children and Adolescents, Independent of Their Association with Growth and Obesity. Horm Res Paediatr. 2019;91(1):1-8. doi: 10.1159/000497113. PubMed PMID: 30904905. ## 42. Erol M, Gayret OB, Nacaroglu HT, Yigit O, Zengi O, Akkurt MS, et al. Association of Osteoprotegerin with Obesity, Insulin Resistance and Non-Alcoholic Fatty Liver Disease in Children. Iran Red Crescent Med J. 2016;18(11):e41873. doi:10.5812/ircmj.41873. PubMed PMID: 28203453; PubMed Central PMCID: PMC5294423. ##